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Abstract

Objective: Unstructured data present in electronic health records (EHR) are a rich source of 

medical information; however, their abstraction is labor intensive. Automated EHR phenotyping 

(AEP) can reduce the need for manual chart review. We present an AEP model that is designed to 

automatically identify patients diagnosed with epilepsy.

Methods: The ground truth for model training and evaluation was captured from a combination 

of structured questionnaires filled out by physicians for a subset of patients and manual chart 

review using customized software. Modeling features included indicators of the presence of 

keywords and phrases in unstructured clinical notes, prescriptions for antiseizure medications 

(ASMs), International Classification of Diseases (ICD) codes for seizures and epilepsy, number 

of ASMs and epilepsy-related ICD codes, age, and sex. Data were randomly divided into training 

(70%) and hold-out testing (30%) sets, with distinct patients in each set. We trained regularized 

logistic regression and an extreme gradient boosting models. Model performance was measured 

using area under the receiver operating curve (AUROC) and area under the precision–recall curve 

(AUPRC), with 95% confidence intervals (CI) estimated via bootstrapping.
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Results: Our study cohort included 3903 adults drawn from outpatient departments of nine 

hospitals between February 2015 and June 2022 (mean age = 47 ± 18 years, 57% women, 82% 

White, 84% non-Hispanic, 70% with epilepsy). The final models included 285 features, including 

246 keywords and phrases captured from 8415 encounters. Both models achieved AUROC and 

AUPRC of 1 (95% CI = .99–1.00) in the hold-out testing set.

Significance: A machine learning-based AEP approach accurately identifies patients with 

epilepsy from notes, ICD codes, and ASMs. This model can enable large-scale epilepsy research 

using EHR databases.
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1 | INTRODUCTION

Electronic health records (EHR) contain information useful for clinical and research 

applications.1 However, >80% of EHR data are in unstructured clinical notes.2,3 Notes data 

are difficult to analyze at scale because they typically require human chart review.4–6

Automated EHR phenotyping (AEP), in which features from notes are combined with 

structured information, has emerged as a solution7 to facilitate research in large EHR 

datasets. AEP has value in identifying diagnoses,8 especially for prevalent diseases. Epilepsy 

affects 50–70 million people worldwide9,10 and is associated with high costs,11 premature 

death, and lost work.9,12,13 Prior studies have used diagnosis codes from the International 

Classification of Diseases (ICD-9, ICD-10) to identify patients with epilepsy.14–20 However, 

ICD codes are intended primarily for billing purposes rather than communicating medical 

diagnoses, and inferring diagnoses from ICD codes can be inaccurate.8 Although current 

applications of AEP in epilepsy have so far been limited by algorithm accuracy and 

generalizability, larger study sizes in genetic studies and precision medicine trials are 

making AEP essential for epilepsy phenotyping.21

We present a machine learning-based AEP approach to identifying patients with epilepsy 

from unstructured clinical notes, ICD codes, antiseizure medications (ASMs), and 

demographics from EHR.

2 | MATERIALS AND METHODS

2.1 | Study cohort

This study is reported in accordance with the STROBE (Strengthening the Reporting of 

Observational Studies in Epidemiology) statement.22 EHR data were extracted under a 

protocol approved by the institutional review board with a waiver of informed consent. Data 

were from adult patients (age ≥ 18 years) seen in epilepsy clinics and other departments.

The ground truth for the diagnosis of epilepsy was extracted using one of four methods: 

first, when available, we extracted the ground truth directly from structured questionnaires 

(available for a subset of patients23 as part of a quality improvement process; n = 2277 
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patients, N = 6916 visits); second, by computationally searching for a small set of phrases 

that clearly stated a patient did not have a diagnosis of epilepsy (specifically, “no epilepsy”, 

“not epilepsy”, or “does not have epilepsy”) followed by manual verification (n = 42, N 
= 45); third, by manual review of charts using the EHR interface (Epic; n = 13, N = 69); 

and fourth, by manual review using customized software (Prodigy24; we made our code for 

annotations with Prodigy publicly available, including the code for sentence tokenization, 

pattern matching from a list of keywords presented in Table S1, and prompts to run the 

application programming interface [https://github.com/mpriscila88/epilepsy_classification]; 

for patients seen in the epilepsy clinics: n = 911, N = 1000; other departments: n, N = 1500). 

Notes selected for annotation24 were randomly selected from epilepsy clinics (N = 1000) 

between January 12, 2016 and June 14, 2022, and other from departments (N = 1500) from 

February 1, 2015 to June 14, 2022. Cases lacking a ground truth diagnosis (diagnosis of 

epilepsy uncertain) were excluded. After excluding uncertain cases (n = 736, N = 1103) and 

nonadults (n = 2, N = 12), the cohort included 3903 patients with 8415 notes, where 69% 

(n = 2708, N = 7090) had a diagnosis of epilepsy. There were 2741 distinct patients seen in 

outpatient epilepsy clinics; the remaining 1162 were seen in other departments.

2.2 | Features for modeling

The initial set of text features included 300 keywords and phrases (Table S1). Of these, 246 

were present in the notes of our dataset (Table S2). The final set of features included age, 

sex, 32 groups of ASMs, four groups of ICD codes, the number of active ASMs, number 

of ICD codes assigned at the visit, and 246 text features, for a total of 286 features. ICD 

groupings and ASMs were defined a priori by two epileptologists (S.F.Z., M.B.W.). All 

features were binary except age, number of ICD codes, and number of ASMs. ICD codes 

and ASM groupings, and text features and their preprocessing, were as follows:

• ICD codes: ICD codes were grouped into categories: “epilepsy and recurrent 

seizures”—ICD-10G40.* and ICD-9345.* codes, plus genetic epilepsy codes 

Q04.3, R56.9, 742.4, and 780.39; “convulsions/seizures”— ICD-10 R56.* and 

ICD-9780.39; and syncope— ICD-10 R55 and ICD-9780.2 codes. A day prior to 

and after the visit was considered for assignment of an ICD code to account for 

prior or delayed data entry.

• ASMs: ASMs included acetazolamide, brivaracetam, cannabidiol, 

carbamazepine, cenobamate, clobazam, clonazepam, clorazepate, diazepam, 

eslicarbazepine, ethosuximide, ezogabine, felbamate, gabapentin, ketamine, 

lacosamide, lamotrigine, levetiracetam, lorazepam, methsuximide, midazolam, 

oxcarbazepine, perampanel, phenobarbital, phenytoin, pregabalin, primidone, 

rufinamide, tiagabine, topiramate, valproic acid, and zonisamide.

• Text features: Features were extracted from notes after preprocessing. Special 

characters and duplicated blank spaces were removed, followed by lowercasing. 

Text was stemmed using SnowballStemmer, an updated version of Porter 

stemmer,25 where each word is reduced to its base word or stem (e.g., “cares”, 

“cared” ➔ “care”). Features from notes were indicators of the presence of 

keywords and phrases, or “bags of words” (unordered sets of keywords), 

defined by the study team (Table S1). Notes were tokenized at the sentence 
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level. Sentences were extracted for further featurization if they included one 

or more of the keywords or phrases. The remaining text was not used. A 

binary feature column indicating presence or absence of each phrase or “bag” 

of keywords was created. For example, for “I do not recommend antiepileptic 

medication”, the bag of (stemmed) keywords consisted of {“not”, “recommend”, 

“antiepilept”, “medic”}. In case a sentence containing these words was present, 

the corresponding binary feature column was assigned “1” for this note. Text 

features from the initial set were automatically excluded if not present in any 

notes. Groups of features that were semantically equivalent, (e.g., “seizure free” 

and “sz free”), were merged into a single binary column. A list of merged 

bag-of-words features is presented in Table S3.

2.3 | Modeling design

Our model consists of two stages. The first applies a simple rule based on ICD codes and 

ASMs to classify “easy cases.” For cases not classified as “easy” (i.e., “hard cases”), the 

model applies a more complex machine learning algorithm (see below).

2.3.1 | Stage 1: Classification of “easy” cases—The model first categorizes a 

patient into groups based on whether they have any epilepsy-related ICD code (ICD+) 

versus none (ICD−), and whether patients had been prescribed any ASMs (ASM+) versus 

none (ASM−). We defined four groups. “Easy cases” are defined as ASM+ ICD+, ASM− 

ICD−, in which ASM and ICD status are concordant, and “hard cases” as ASM− ICD+, 

ASM+ ICD−, in which ASM and ICD status are discordant. Easy cases are categorized by 

the model as follows: patients in the ASM− ICD− (“easy negative”) group are classified a 

priori as not having epilepsy; those in the ASM+ ICD+ (“easy positive”) group are classified 

as having epilepsy. Patients not in the group of easy cases are classified by Stage 2 of the 

model.

2.3.2 | Stage 2: Classification of “hard” cases—For patient visits in the mixed 

groups (ASM+ ICD−, ASM− ICD+), we developed a machine learning model (Stage 

2 of the classification model). To develop the model, cases were divided randomly to 

create a dataset with distinct patients in train (70%) and hold-out test (30%) sets. Age, 

number of ICD codes, and number of ASMs were normalized using minimum–maximum 

normalization.26 Hyperparameter tuning was performed to train a regularized logistic 

regression (LR) model27 and an extreme gradient boosting (XGBoost)28 model in 100 

iterations of fivefold cross-validation using the training data. Hyperparameters selected for 

tuning are presented in Appendix S1.1. Stage 2 models were created including five sets 

of features (total number): text features (246); ICD codes, including number of ICD codes 

assigned (4); ASMs, including number of ASMs prescribed (33); ICD codes, ASMs, age, 

sex (39); and text features, ICD codes, ASMs, age, sex (285). Performance of the models 

in the test set was compared. For LR, the relative importance of features was assessed by 

magnitude of the regression coefficients; for XGBoost, we used SHAP (Shapley Additive 

Explanations) values.29
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2.4 | Performance evaluation

Model performance was evaluated using area under the precision–recall and receiver 

operating characteristic curves (AUPRC, AUROC).30 AUPRC quantifies the trade-off 

between precision (i.e., positive predictive value) and recall (i.e., sensitivity). AUROC 

quantifies the trade-off between sensitivity and false positive rate31. We selected a threshold 

to convert model output probabilities to binary decisions (for Stage 2 of the model; Stage 

1 already produces binary decisions for easy cases). The threshold was calculated with 

training data based on maximization of the F1 score (harmonic mean of precision and 

recall; F1 = [precision × recall]/[precision + recall]), which is suited for imbalanced data.30 

These binary decisions are compared to the ground truth labels, and categorized as true 

and false positives, and true and false negative classifications, from which we calculated 

model specificity and F1 score.32 For each metric, we present the macro average for both 

positive and negative diagnoses of epilepsy. That is, we calculate the metric with epilepsy 

as the target class, and with nonepilepsy as the target class, and compute the average. We 

performed 1000 bootstrapping iterations to calculate 95% confidence intervals (CIs).

3 | RESULTS

3.1 | Patient characteristics

Our final cohort comprised 3903 patients with 8415 visits (see CONSORT33 diagram in 

Figure 1). Most patients were women (57.5%), White (82.3%), and non- Hispanic (83.9%), 

with an average age of 46 years at baseline (Table 1). A total of 2733 (70%) patients had a 

diagnosis of epilepsy.

Patient visits with a documented diagnosis of epilepsy were prescribed a median of 2 

(interquartile range [IQR] = 1–3) outpatient ASMs, whereas patients with a negative 

diagnosis were prescribed 0 (IQR = 0–1). Lamotrigine (37.2%) was the most prescribed 

ASM, followed by levetiracetam (36.5%), lorazepam (25.3%), and lacosamide (14.1%; 

Table S4). The most commonly assigned epilepsy-related ICD codes were “epilepsy and 

recurrent seizures” (ICD-10G40.* and ICD-9345.*; 63.7%). Text features that appeared 

most often in patients with epilepsy included “history of seizures”, “with epilepsy”, “focal”, 

“lamotrigine”, and “keppra”.

3.2 | Model performance

3.2.1 | Performance on “easy” cases—The test set included 1983 “easy” visits 

(942 patients). Among these, 160 (155 patients) had neither epilepsy ICD codes nor ASMs 

(ASM− ICD− group), and 1823 (787 patients) had both ICD codes and ASMs (ASM+ 

ICD+). Stage 1 of the model classifies all ASM− ICD− visits as not having epilepsy, and 

all ASM+ ICD+ patient visits as having epilepsy; thus, the model will be incorrect for any 

ASM− ICD− cases that have a diagnosis of epilepsy (false negative), and for ASM+ ICD+ 

cases that do not have a diagnosis of epilepsy (false positive).

Within the ASM− ICD− group, no visits had a diagnosis of epilepsy, yielding a false 

negative rate of 0% (0/160).
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Within the ASM+ ICD+ group, 30 visits were not associated with an epilepsy diagnosis, 

yielding a false positive rate of 1.6% (30/1823). The overall error rate (false positives + 

false negatives) on easy cases was 1.5% (30/1983). Upon chart review, we identified four 

types of reasons for the presence of epilepsy ICD codes and ASMs (number of visits): (1) 

patient had been diagnosed with epilepsy and prescribed ASM by a prior neurologist but was 

being weaned off by a new neurologist (19); (2) patient had experienced a single provoked 

seizure that was not felt to be epilepsy, but was taking an ASM for a psychiatric indication 

or migraines (6); (3) patient was prescribed ASM for suspected epilepsy but had not been 

given a diagnosis (3); and (4) patient had a previous diagnosis of epilepsy but was now 

considered in remission and was tapering off ASMs (2).

3.2.2 | Performance on “hard” cases—We next evaluated performance of Stage 2, 

the machine learning algorithm that classifies “hard” cases (ASM+ ICD−, ASM− ICD+). 

Overall, among hard test set cases there were 547 visits (404 patients), among which 72.0% 

(394/547) had a diagnosis of epilepsy, and 28.0% (153/547) did not. The ASM+ ICD− 

group had 491 patients, 79.8% (392/491) with an epilepsy diagnosis; the ASM− ICD+ group 

had 56 patients, 4.6% (2/56) with an epilepsy diagnosis. We report performance of several 

versions of the Stage 2 model to analyze the importance of the classification model type 

(simple linear model [LR] vs. complex model [XGBoost]), and type of information provided 

to the model (ICD codes vs. ASMs vs. text-based features vs. combinations).

Using all features (ASM, ICD, text), performance of LR and XGBoost models was similar 

(Table 2). AUROC and AUPRC curves for the LR model are shown in Figure S2; confusion 

matrices are in Figure S3. Hyperparameters selected in fivefold cross-validation are shown 

in Table S5. Model performance within the four groups is summarized in Table S6. Because 

the two models performed similarly, from here onward we discuss only the LR results, as 

this simple model is more interpretable.

To investigate importance of various types of information, we trained the LR model with 

the following: ICD codes alone, ASMs alone, text-based features alone, all non-text-based 

features, and all features combined (Figure 2). With ICD codes alone the model performed 

poorly, with a recall of .51 (95% CI = .50–.51) and low F1 score of .44 (95% CI = .42–.47). 

With ASMs, the model performed better, with recall of .90 (95% CI = .87–.93) and F1 score 

of .91 (95% CI = .88–.94). After adding ICD codes, age, and sex to ASMs, performance 

was similar, with a slight decrease of 1% in AUPRC, whereas AUROC remained unchanged. 

Performance with text features alone surpassed performance using all features except text. 

Combining all features, AUPRC and AUROC had a 1% increase compared to text only, 

whereas recall and F1 score increased 3% and 2%. Models with all feature types performed 

best, with macro average AUROC and AUPRC of 1 (95% CI = .99–1), as depicted in Table 

2. From here on “LR model” refers to the LR model trained with all features.

Within the 547 hard cases in the test data, the LR model misclassified eight visits; thus, the 

overall error rate for hard cases was 8/547 = 1.46%. All eight misclassifications occurred 

within the ASM+ ICD− group; six patients with epilepsy were incorrectly classified as 

not having epilepsy (false negatives), yielding a false negative rate of 6/392 = 1.53%; two 

patients without epilepsy were incorrectly classified as having epilepsy (false positives), 
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yielding a false positive rate of 2/99 = 2.02%. Within the ASM− ICD+ group, all 54 patients 

who did not have epilepsy and two who had the diagnosis were correctly classified.

These mixed cases within the ASM+ ICD− group are more ambiguous than the “easy 

cases,” lacking either an ASM prescription or an ICD code. On manual chart review, 

reasons for false positives in this group were a patient with prior seizures but no diagnosis 

of epilepsy taking an ASM for a nonseizure indication (migraines), and a patient with a 

prior seizure disorder now off ASMs and no longer considered to have epilepsy. Reasons 

for false negatives included histories of psychiatric illness,2 attention deficit hyperactivity 

disorder,1 obsessive compulsive disorder,1 mood disorders,1 panic and anxiety,1 depression,1 

and complaints related to pain1 in patients who also had a diagnosis of epilepsy. In these 

cases, emphasis in physicians’ notes was on the nonepilepsy diagnosis, and identifying that 

the patient had a diagnosis of epilepsy was difficult even for chart reviewers.

3.2.3 | Overall performance in the test set—The overall model, evaluated on the 

full test set (including both easy and hard cases), achieved a macro average AUROC and 

AUPRC of 1.00 (95% CI = .99–1; Table S7). AUROC and AUPRC curves are shown in 

Figure S1.

Overall performance within the general hospital population: Prevalence of epilepsy 

within the overall hospital population is smaller than in our test set. To estimate the expected 

performance in the general hospital population, we selected an additional random sample 

of 1000 adults from the EHR, to estimate the prevalence of patients within each of the 

four groups. These percentages and numbers are as follows: ASM+ ICD+, .1% (n = 1); 

ASM+ ICD−, .1% (n = 1); ASM− ICD+, 4.1% (n = 41); ASM− ICD−, 95.7% (n = 957). 

Putting these prevalence values (p++, p+−, p−+, p−−) together with the corresponding model 

error rates (Pe++, Pe+−, Pe−+, Pe−−), performance within the overall hospital population is 

estimated to be:

P E = Pe+ + p+ + + Pe±p± + Pe∓p∓ + Pe− − p− − = .012 ⋅ .01 + .012 ⋅ .01 + 0 ⋅ .04 + 0 ⋅ .96 = .0003

The overall error rate in the general (hospital) population is thus .03%, which is quite small.

3.3 | Features importance

The relative importance of the top 20 features in the final LR model is presented in Figure 3 

(for the XGBoost model, see Figure S4). Prescription of lamotrigine was the most important 

feature, followed by levetiracetam. Prescription of other ASMs (lacosamide, valproic acid, 

carbamazepine, clobazam) were among the top 20. The number of ASMs prescribed was 

also important, as well as the group of ICD codes for “epilepsy and recurrent seizures.” The 

bag of words feature {“partial”, “seizur”} referring to partial seizure(s) was the third most 

important feature. Reference to “tonic clonic seizures” or “sudden unexpected death” were 

also important. Features contributing to classification of a negative diagnosis of epilepsy 

included reference to not taking ASMs ({“no”, “antiseizur”, “medic”}); no epileptiform 

activity ({“not”, “epileptiform”, “activ”}); the keyword “psychogenic”, which was often 

associated with mentions of psychogenic nonepileptic seizures (PNES), and psychiatric and 
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psychological factors such as stress, depression, or anxiety; acute symptomatic seizures 

({“acut”, “symptomat”, “seizur”}; as opposed to epilepsy34); and the keyword “vasovagal”, 

which relates to fainting.35

4 | DISCUSSION

4.1 | Principal findings

A machine learning-based AEP approach achieved excellent performance for identifying 

patients with a diagnosis of epilepsy from EHR data by integrating information from clinical 

notes, ICD codes, and prescriptions for ASMs. The linear model (LR) achieved similar 

results to the black-box model (XGBoost), with the advantage of being simpler and more 

easily interpretable. The model substantially outperformed models that relied only on ICD 

codes, only ASMs, or a combination of both. The model developed in this work allows 

identification of patients with epilepsy from the EHR at scale, paving the way for large-scale 

EHR-based studies of epilepsy.12,13

We observed that the AEP model using text features alone exhibited very high performance, 

nearly as high as the model using all features. For the group of patient visits with indication 

of an ASM or an epilepsy-related ICD code, the LR model using all features achieved 

an AUROC of 1 (95% CI = .99–1.00) and an AUPRC of 1 (95% CI = .99–1.00) and 

.99 (95% CI = .98–1.00) for positive and negative diagnosis of epilepsy, respectively. The 

most important features contributing to the classification consisted of prescription of certain 

ASMs, with lamotrigine ranked most important, ICD codes for “epilepsy and recurrent 

seizures,” and text features. Some text features contributing to the positive diagnosis 

of epilepsy were related to types of seizures, whereas the most prominent features for 

the negative diagnosis were related to not taking or needing to take ASM, having no 

epileptiform activity on electroencephalographic (EEG) testing, the presence of psychogenic 

factors, or text indicating acute symptomatic seizures and vasovagal episodes.

4.2 | Comparison with prior work

Several prior studies have investigated approaches to identifying epilepsy using EHR 

data mining and varying combinations of clinical notes, ICD codes, EEG, and ASM 

utilization.14–20,36 The reported precision and recall of prior work has ranged from .33 

to 1.00, and .22 to 1.00, respectively.14–20,36 Limitations of prior literature include small 

sample sizes.15,18–20,36 Other limitations include overestimation of epilepsy cases, and 

higher number of false positives, likely because of not including data from clinical notes 

and therefore insufficiently capturing nonseizure indications for ASMs.14 Prior work that 

has used structured epilepsy questionnaires limited their analysis only to patients with 

completed questionnaires and those seen by a neurologist.15 In contrast, we included 

varying provider types (epileptologists, other neurologists, and nonneurologists) to increase 

generalizability. Similarly, in another study using ICD codes alone, the model was developed 

only for patients seen in neurology clinics, where the prevalence of epilepsy is much 

higher than in a general patient population, likely inflating the estimated precision of the 

algorithms.19 In other work using ASM prescriptions, pharmacy data were obtained only 

for patients who had prescriptions filled within pharmacies that contracted with a medical 
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plan, and prescriptions filled outside the system were unknown, which could have led to 

underestimated use of ASMs by patients with seizure disorders.18 These factors might have 

affected the consistency of the data used for modeling and limited predictive power. In this 

study, the reliability and validity of using medical record reviews as a gold standard for 

establishing an epilepsy diagnosis depended in part on the diagnostic abilities of the health 

care providers and the consistency and quality of medical record keeping. In a systematic 

review17 of 30 studies published between 1989 and 2018, the authors concluded that the 

precision was higher in algorithms combining ICD codes with ASMs. Our work shows that 

incorporating features derived from unstructured notes can further enhance the precision of 

models to identify epilepsy through EHR mining.

Other studies applied text mining techniques for epilepsy phenotyping from radiology 

reports,21 clinician notes,21 EEG reports,21,37 and discharge summaries,37–39 including 

identification of epilepsy syndromes,21,37 EEG abnormalities,21 and PNES.21,40 Studies 

also applied text mining for classification of types of epilepsy from progress notes41 

and clinic letters36 using ontology-based language;42,43 epilepsy cohort generation44 using 

standardized vocabularies; and extraction of abnormal findings on imaging, medications, 

and seizure frequency from clinic letters.36 Our study is the first to combine text mining 

with ICD codes and medications, resulting in a model with higher accuracy in identification 

of epilepsy compared with prior work. Potential applications of our model include quality 

improvement and comparative effectiveness studies, and identification of patients for clinical 

trial eligibility.

4.3 | Limitations

The present analysis was limited to patients in a single hospital system, in one geographic 

region (Boston, Massachusetts). Thus, the cohort may not be representative of other US 

and non-US populations. Prescription of ASMs may also vary according to the patients’ 

type of insurance, which was not considered in our modeling approach; thus, including this 

information in the model can be pursued in future work. Although findings from EEG and 

magnetic resonance imaging examinations might be present in notes, features from reports 

of these could be explicitly included for modeling in future work. Cases where the notes 

did not contain enough information to define a diagnosis, either due to lack of clinical 

information related to the diagnosis or brevity of some notes, were not considered in the 

study; however, in cases that we reviewed, this limitation appeared to be largely related to 

clinical diagnostic uncertainty on the part of clinicians regarding the ground truth rather 

than a limitation of our model. Although our model classifies the diagnosis, it does not 

classify the type of epilepsy, or provide information about the severity of epilepsy or seizure 

frequency. These other aspects of epilepsy are important determinants of life quality for 

patients with epilepsy; thus, developing models able to extract them is an important future 

direction.

5 | CONCLUSIONS

An interpretable machine learning-based natural language processing approach accurately 

identifies patients with epilepsy using a combination of clinical expertise in defining 
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keywords and phrases from unstructured clinical notes with ICD codes, antiseizure 

medications, and demographic patient data. This model will enable large-scale epilepsy 

research using EHR.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key Points

• Unstructured data present in EHR are a rich source of medical information; 

however, their abstraction is labor intensive

• AEP can reduce the need for manual chart review

• Our AEP approach accurately identifies patients with epilepsy from notes, 

ICD codes, and ASMs

• Neurologists’ expertise in identifying keywords and phrases related to 

diagnoses of epilepsy was vital to creating the AEP models

• The model developed will enable large-scale epilepsy research using EHR 

data
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FIGURE 1. 
CONSORT diagram for the study cohort, where “n” and “N” represent the number of 

patients and visits, respectively. The groups ASM+/− ICD+/− indicate presence/absence of 

an antiseizure medication (ASM) or epilepsy-related International Classification of Diseases 

(ICD) code (defined in Subsection 2.3). Patients in the study cohort may have more than one 

encounter; thus, different encounters for the same patient might be present in each group of 

hard and easy cases. EHR, electronic health records.
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FIGURE 2. 
Macro average performance on “hard cases” of the logistic regression classification model 

for different sets of features in the test set including patients with International Classification 

of Diseases (ICDs) codes for seizures or antiseizure medications (ASMs). “All” includes 

text, ICDs, ASMs, age, and sex. AUPRC, area under the precision–recall curve; AUROC, 

area under the receiver operating characteristic curve.
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FIGURE 3. 
Top 20 most important features of the logistic regression model using the set with all 

features. For each bag of words in brackets, words are presented in their stemmed form, 

and they all appear in at least one sentence of the patient visit notes. ASM, antiseizure 

medication.
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TABLE 1

Characteristics of the study cohort.

Characteristic Study cohort, n = 3903

Age, years, mean ± SDa 47 ± 18.2

Sex, n (%)

 Male 1659 (42.5)

 Female 2244 (57.5)

Race, n (%)

 Black or African American 217 (5.5)

 Otherb 475 (12.2)

 White 3211 (82.3)

Ethnicity, n (%)

 Hispanic 263 (6.7)

 Unknown 367 (9.4)

 Non-Hispanic 3273 (83.9)

Epilepsy diagnosis, n (%)

 Positive 2733 (70.0)

 Negative 1170 (30.0)

 Number of encounters, N 8415

Diagnosis, N (%)

 Epilepsy and recurrent seizures 5363 (63.7)

 Convulsions seizures 1149 (13.7)

 Syncope 8 (.1)

Top ASMs, N (%)c

 Lamotrigine 3134 (37.2)

 Levetiracetam 3072 (36.5)

 Lorazepam 2131 (25.3)

 Lacosamide 1186 (14.1)

Top text features, N (%)d

 {{“histori”, “seizur”}; {“hx”, ”seizur”}} 6301 (74.9)

 {“no”, “seizur”} 5827 (69.2)

 {“with”, “epilepsi”} 5785 (68.7)

 {{“lamotrigin’}; {“ltg”}} 4505 (53.5)

 {“keppra”} 4337 (51.5)

 {“focal”} 4274 (50.8)

 {“general”, “seizur”} 3968 (47.2)

 {{“levetiracetam”}; {“lev”}} 3892 (46.3)

 {“febril”} 3877 (46.1)

 {“seizur”, “control”} 3177 (37.8)

Note: The number of patients is represented by n and the number of visits by N.

Abbreviation: ASM, antiseizure medication.
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a
Age at baseline for the first visit in the study period.

b
“Other” includes unknown, declined, American Indian or Alaska Native, Asian, and Native Hawaiian or other Pacific Islander.

c
A full list of ASMs is presented in Table S4.

d
Bag of words for the top 10 text features present in the cohort encounters notes.
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